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A numerical investigation was carried out to predict the simultaneously developing steady 
laminar flow and heat transfer to a purely viscous non-Newtonian fluid described by a 
power law model flowing between two parallel plates. Several different thermal boundary 
conditions were examined. It is shown that the Nusselt number distribution along the 
walls is affected appreciably by the variation of the fluid viscosity with temperature, viscous 
dissipation, the magnitude of the power law index as well as the fluid Prandtl number 
and thermal boundary conditions. 
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I n t roduct ion  

Heat transfer to purely viscous non-Newtonian fluids is 
frequently encountered in various industries (e.g., chemical, 
petrochemical and food processing). These fluids are commonly 
processed under laminar flow conditions because of their high 
apparent viscosities and also the small hydraulic diameters 
employed in compact heat exchangers. 

Several types of heat exchangers are now available for a wide 
variety of applications requiring excellent heat-transfer 
performance. Plate heat exchangers belong to this category. In 
many cases, because of the relatively short length of compact 
heat exchangers, the entrance region heat transfer and pressure 
drop are parameters of practical interest. 

Two types of thermal boundary conditions are of primary 
interest: constant wall temperature, denoted here by T, and 
constant wall heat flux, denoted by H. Different combinations 
of these boundary conditions may be applicable in specific 
cases. 

Simultaneously developing steady laminar flow and heat 
transfer for flows between parallel plates have been studied 
extensively. Shah and London (1978), Shah and Bhatti 0987) 
among others have published extensive compilations of 
available information, both experimental and computational. 
Huhn (1992) has correlated the data of various investigations 
and developed an empirical correlation for the entry length 
Nusselt number in such flows. However, to date, very few 
studies have been reported in the literature on the 
simultaneously developing region between parallel plates for 
non-Newtonian fluids. In an excellent literature review 
Hartnett and Kostic (1989) have summarized the investigations 
on heat transfer to power law fluids flowing in square ducts 
and parallel plates. A brief review of the most relevant studies 
is presented here. 

Address reprint requests to Professor Mujumdar at the Department 
of Chemical Engineering, McGill University, 3480 University Street, 
Montreal, Quebec, Canada H3A 2A7. 

Received 27 July 1993; accepted 16 November 1993 

© 1994 Butterworth-Heinemann 

Yau and Tien (1963) employed the momentum and energy 
integral method of yon K/lrmfin and Pohlhausen to solve 
the laminar entrance heat-transfer problem for power law 
non-Newtonian fluids flowing between parallel plates for type 
T boundary condition. As noted by Hartnett and Kostic (1989) 
their Nusselt number predictions appear to be in error when 
recalculated on the basis of Nux versus X*h with the Prandtl 
number as the parameter. The numerical marching method of 
Patankar and Spalding (1970) was used by Lin (1977) and Lin 
and Shah (1978) for T-boundary condition. These invest- 
igations cover a wide range of power law index and Prandtl 
number values. 

An important feature of most purely viscous non-Newtonian 
fluids is that some of their rheological and thermophysical 
properties are very sensitive to temperature. This variation can 
have a large effect on the development of the velocity and 
temperature profiles and consequently on the pressure drop 
and heat transfer rates. Lin and Hsu (1980) considered this 
problem for non-Newtonian fluids flowing between parallel 
plates for a fully developed velocity profile at the inlet. Klemp 
et al. (1992) applied a combined asymptotic and finite-difference 
method to account for the viscosity variation of purely viscous 
non-Newtonian fluids subjected to the H boundary condition. 
They presented results for both Reynolds number and Peclet 
numbers equal to 1. 

The factor that plays a key role in the thermal control of 
some polymer processing operations is viscous dissipation. The 
first theoretical work considering viscous dissipation is credited 
to Brinkman (1951) who examined the flow in a capillary. The 
effect of viscous dissipation for thermally developing laminar 
flow of Newtonian and non-Newtonian fluids between parallel 
plates was studied recently by Flores et al. (1991). This effect 
for a simultaneously developing flow situation has not been 
considered heretofore. 

Review of the existing literature reveals little work on the 
simultaneously developing entry-length problem for power law 
fluids flowing between horizontal parallel plates. The present 
work considers the effects of the power law index, 
temperature-dependent viscosity and viscous dissipation under 
a variety of constant temperature and constant heat flux wall 
boundary conditions. 
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Notation 

B 

B' 

Br 

C 
Cp 
D 
Dh 
E 

f 

fspp 
f(T) 

F(O) 

# 
H 
K 
ko 

n 
NUll 

NUH(I) 

Nul 

dimensionless temperature--viscosity coefficient 
defined by Equations 9 and 10 
temperature-viscosity coefficient defined by 
Equation 2 

kou,~+ 1 
Brinkman number = K(T, - Tw)D~-1 for T-type 

b n+l ) 
and = --'~°u= for H-type boundary conditions 

D[q 

defined by Equation 7 
heat capacity 
defined by Equation 7 
hydraulic diameter (= 2H) 
defined by Equation 7 

fricti°n fact°r ( = ~ pu l ) 

apparent friction factor 
temperature dependence function of the 
consistency index defined by Equation 2 
dimensionless temperature dependence function of 
the consistency index defined by Equations 
9 and 10 
gravity acceleration 
channel height 
thermal conductivity 
consistency index at reference temperature (= T w 
for T-type and = T= for H-type boundary 
conditions) 
power law index 
fully developed Nusselt number for H boundary 
condition 
fully developed Nusselt number for H(1) boundary 
condition 
local Nusselt number based on the temperature 
difference between the wall and the inlet fluid 

( l y e )  NUm mean Nusselt number = Nu~dX 

NUT fully developed Nusselt number for T boundary 
condition 

Nut<l) fully developed Nusselt number for T(1) boundary 
condition (00) 

( Nu~ local Nusselt number -- ~ ~ for H-type and 

(00)  
_ w for T-type boundary conditions| 

Ob ] 

p pressure 

P dimensionless pressure ~, = pu2 ] 

Ap axial pressure drop (= pc -- p) 

Pe Pecletnumber(=PC~ ¢Dh) 

/'U¢~ n-1 

Pr Prandtl number = 
K 

q heat flux 

Q~ dimensionless heat flux ( =  q 1--~--= o ) 

Re Reynolds number = ~ ] 

T temperature 
u axial velocity 

U dimensionless axial velocity = 

Uc dimensionless centerline velocity 

v transverse velocity 

V dimensionless transverse velocity -- 

x axial distance 

X dimensionless axial distance ( - -  ~ )  

X~'y dimensionless axial coordinate -- 

dimensionless axial coordinate ( =  D-~Pe) 

transverse distance 

Y dimensionless transverse distance ( =  ~hh) 

Greek letters 
A rate of deformation tensor in Cartesian coordinates 

T - Tw 
0 dimensionless temperature = ~ - -  ~ for T-type 

T - T, 

and = __qDh for H-type boundary conditions~ 
K 

0b., dimensionless bulk temperature evaluated at 
x-axial position 

p density 
z shear stress tensor 
Zw wall shear stress 

x* 

Y 

Subscripts 
b evaluated at bulk condition 
e evaluated at inlet condition 
H, x evaluated at local x-position for H-type boundary 

conditions 
m mean value 
T, m mean value evaluated at local x-position for 

T-type boundary conditions 
T, x evaluated at local x-position for T-type boundary 

conditions 
x evaluated at local x-position 
w evaluated at wall condition 
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Problem sta tement  

Figure 1 describes the basic flow configuration modeled. All 
fluid properties are taken to be constant except viscosity. The 
duct walls are held at either a fixed temperature or a constant 
heat flux. Further, combinations of these two classical 
boundary conditions were also examined (Table 1). 

The power law model in its general form is 

z = kof(T)lA:Al"- I/2A (1) 

where n is the power law index (n < 1 pseudoplastic, n = 1 
Newtonian and n > 1 dilatant behavior), ko is the consistency 
index at a reference temperature (To), and f(T) gives the 
temperature dependence of the consistency index as follows: 

f(T) = e e'(T-T°) (2) 

Here B' is an empirical constant  (temperature-viscosity 
coefficient). The dimensionless forms of the applicable 
equations of continuity, momentum and energy are 

Continuity: 

8U OV 
- - + - - = 0  
8X OY 

x-Momentum: 

8U OU 
U - - + V  . . . .  

OX gY 

y-Momentum: 

OV OV 
U - - +  V . . . .  

Ox 8Y 

(3) 

8P +±(8c 80) 
+ (4) 

~x ~ekOX 

+ + (5) 
a g  

Energy: 

00 80 1 [020 820\  Br 
U O~ + V 0 - ~ = p c \ ~ X ~ + ~ - ~ ) + p c /  

- -  + E - -  + + (6) 

where 

2~2[(OVi = (OVi~ l (~V av]2~.-'/2 av -- F(O) 
c = ( L\~-x/ + \ -~/J  + o f  + ~ / 3  8x 

D = (2 [ (OUl2  + (O yl + + ovyr- , , :  
t L\aX/ kSY) J ~ ~-x/J 

OU + OV 
x \-~-~ -~-x)F(O) 

2 ~ 2 [ ( a U / 2  + (OVI21 + dVl2~"-'/2 
e = ( Lk-~ /  \-o-r/J + (~Y o-x /3  

dV 
x 8--Y F(O) (7) 

The dimensionless variables and dimensionless param- 
eters in the preceding equat ions  are def ined as fol lows:  

u v x y p - -  pgy 
U = - - , V = - - , X = - - , Y = - -  P = ~  

U, U, D h D h' puZ~ 
[u , \  .-1 

2-. k°C'L-~ ) 
R e = P U "  /~h, and P r =  (8) 

ko K 

,it o o e 

~--~i~--~--~"~ Y E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  n 

Figure 1 Channel geometry and inlet conditions 

Table 1 Definition of the different thermal boundary condi- 
tions employed in the present study 

Boundary 
Symbol Geometry Description conditions 

Tw Constant f U = 1 
temperature at X = 0 l V = 0 

T both walls O = 1 

T(1) 

H(1) 

Tw 

Tw 

q 

q 

i i i i i i l a l l l M i i n l l l l  

Constant 
temperature at 
one wall; other 
wall insulated 

U = 0  
Y = 0  I V = 0  
Y 0.5l  0 = 0 

{!=' 
X = 0  0 

1 

y = 0 ~ U = 0 ,  V = 0  
( 0 = 0  

Y=0"5 {  U=0'0 V = 0  

{!:' Constant heat X = 0 0 
flux at both = 0 

walls 
U = 0  

Y = 0  V = 0  
Y=0.5  Q = I  

U = I  
Constant heat X =  0 V= 0 

flux at one 0 = 0 
wall; other wall 

insulated Y= 0 ~'U = 0, V = 0 
( O=1  

{ =ov=o Y=0.5  0 

For the constant wall temperature boundary conditions we 
define 

T - T~ ko~  +1 _ eB,O(Te_Tw ) - -  0 . . . .  ; Br - F (0) e B°, 
T= - T .  /~h-Z(T= - T,,)K; - - 

N u , =  r=______~o and N u , =  r=l/z (9) 
0b 0b 
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For constant heat flux boundary conditions the definitions 
are modified to 

T -  T= I, u , + l f  1 ~" 

0 = ; Br = ; F(O) = e ~'eq~/z = e ae, (10) 
K q 

Nu,  = and Nu, = 
O. - 0 b O. - Ob 

The dimensionless axial distance X* is defined as 

x x*, 
x*~ . . . .  (11) 

RePr Pr 

The Fanning friction factor, f, is defined as the ratio of 
the local wall shear stress to the fluid kinetic energy per unit 
volume. For a fully developed flow 

% Ap 1 
- -  = .  ( 1 2 )  

f =  1 2 1 4X 

In the entrance region f is often called the apparent 
friction factor, f ,  pp, and is based on the total pressure drop over 
axial position (from X = 0 to X = X). It takes into account 
both the skin friction and the change in shape of the velocity 
profile from the inlet. 

The local dimensionless bulk temperature at each axial 
location (used in Equations 9 and 10) is calculated as follows: 

= ova____ Y (13) 
V d Y  

The mean Nusselt number over length X measured from 
the inlet is given by 

l for Nu m = ~ Nu, dX (14) 

The heat flux is nondimensionalized in terms of the lower 
plate heat flux, (Q, = q/q It=o). 

The boundary conditions for the four cases studied are 
shown in Table 1. Because of the long length of the plates (120 
times of the hydraulic diameter) and also the high Peclect 
number (500-5,000) and relatively high Reynolds number 
values (500), a fully developed condition could be prescribed at 
the outlet boundary. 

Equations 3-6 subjected to the different boundary conditions 
shown in Table 1 were solved using the fluid dynamic analysis 
package (based on the Galerkin fipite element method). The 
Galerkin finite element method is well documented in the 
literature (e.g., Zienkiewicz 1977; Pittman 1989). 

Results and discussion 

The flow domain was descritizcd into 33 x 121 grids of 9-node 
quadratic quadrilateral elements, and penalty approach was 
chosen for the pressure with the penalty parameter set at 10 -9. 
Because of the higher velocity and temperature gradients in the 
entrance region and in the vicinity of the walls, finer mesh 
distributions were used in these regions. The combination 
strategy used to solve the algebraic equations starts with the 
fixed iteration method with a high relaxation factor for the 
initial iterations and then switches to the quasi-Newton- 
Raphson method with a smaller relaxation factor, thus 
resulting in a significant savings in computational time. 

Power law fluid flowing between parallel plates: S. Gh. Etemad et al. 

Numerical stability of the solution was improved employing 
the Petrov-Galerkin formulation (streamline upwinding). The 
solution and the residual vectors were used as the criteria for 
convergence. Convergence is attained when the relative 
difference between successive solution vectors and the relative 
residual are each less than a specified tolerance. In this study 
the tolerance level of 10 -s  was chosen for both convergence 
criteria. Using such combination convergence criteria provides 
a high level of accuracy of the solution vector. 

To validate the numerical code the computed results were 
compared with the existing experimental results as well as 
available exact solutions. For the fully developed condition the 
centerline velocity and friction factor obtained from this study 
and the analytical results from the equations derived by 
Skelland (1967) were found to be in very close agreement (Table 
2). The Nusselt numbers for hydrodynamically and thermally 
fully developed conditions are given in Table 3. For all 
boundary conditions, the present Nusselt numbers fell within 
0.015 percent of the exact solution values. 

The constant wall temperature boundary conditions IT and 
T(1)] were investigated by Mercer et al. (1967) using an 
intefferometer. Figure 2 shows a comparison of the present 
results and their experimental data obtained for air. Again, the 
agreement is found to be excellent in the light of the 
experimental uncertainties. Note that the local Nusselt number 
defined by Mercer et al. is based on the temperature difference 
between the wall and the inlet fluid. For Figure 2, our results 
were calculated according to the Mercer et al. definition, 
although in the rest of this work the local Nussolt number is 
based on the temperature difference between the wall and the 
local fluid mixing cup temperature. 

Table 4 compares the results from this study and those 
obtained by Hwang (1973, personal communication), and 
Hwang and Fan (1964) using a finite-difference method for 
Newtonian fluids. They employed this technique to obtain 
velocity distributions and then numerically integrated the 

T a b l e  2 Comparison between the Uc and f Re for 
parallel plates obtained from this investigation and 
earlier analytical calculations 

U c f Re 

Present work 1.327 7.99 n = 0 . 5  Analytical* 1.333 8.00 

Present work 1.491 23.88 n=  1.0 Analytical* 1.5 24.00 

Present work 1.546 40.69 n = 1.25 
Analytical* 1.555 40.98 

* Adapted from Skelland, A. H. P. 1967. Non- 
Newronian Flow and Heat Transfer. Wiley, New 
York 

T a b l e  3 Comparison between the fully developed Newtonian 
Nuseelt numbers for parallel plates o b t a i n e d  f rom the present 
investigation and analytical calculations for d i f ferent  boundary 
conditions (Ref. 18) 

NUT(l) NUT NUll(l) NUll 

Present work 4.8616 7.5410 5.3856 8.2353 
Shah and London 4.8610 7.5407 5.3850 8.2353 
(1978) 
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Table 4 Comparison of Nusselt numbers reported by various researchers for Pr = 10, n = 1 and Re = 500 

NUT,rn NUT.x  NUH,x 

Nguyen Rostami 
and Maclaine- Hwang and Mortazavi Present Campos Silva Present 

~h Cross (1991 ) (1973) (1990) work et al. (1992) work 
Hwang and Fan Present 

(1964) work 

0.000125 - -  46.68 47.46 47.18 27.75 24.72 34.07 34.24 
0.000438 - -  27.88 27.63 26.99 16.80 15.82 20.66 20.92 
0.00075 - -  21.94 22.28 21.76 13.70 13.34 17.03 17.18 
0.0020 13.96 15.44 15.63 15.31 10.10 10.27 12.60 12.58 
0.00625 10.49 11.01 11.33 10.95 8.20 8.15 9.50 9.51 
0.010 9.54 9.86 10.4 9.80 7.79 7.72 8.80 8.76 
0.0125 9.15 9.40 10.14 9.38 7.70 7.63 - -  8.55 
0.0250 8.42 8.47 - -  8.41 7.56 7.55 - -  8.26 
0.0406 8.05 8.11 - -  8.09 7.54 7.54 - -  8.24 

(=) 

,°1 T 

II 

II 

¢.s¢I ¢ ~  McS ~ MI 

x: 

Figure 2 Comparison of the 

P~s~t gvaek 
(b)  M=e==, =¢ ~(/~7) 

T( I )  

'l 
xl 

local Nusselt number with 
experimental data for Pr = 0.7 and n = 1.0 

energy equation for both T and H boundary conditions; their 
Prandtl number values ranged from 0.01-50. These results were 
given by Shah and London (1978) and were claimed by Shah 
and Bhatti (1987) to be more accurate than other literature 
values. Nguyen (1991) also used a finite-difference method to 
solve the momentum and energy equations using the stream 
function as an independent variable. The results cover a wide 
range of Prandtl numbers (0.2-2,000). 

This problem was also investigated analytically by Rostami 
and Mortazavi (1990) using a linear profile for the axial 
component of the velocity and solving the energy equation by 
the similarity method. They obtained a closed form expression 
for the Nusselt number as a function of X* and the Prandtl 
number. This method is less applicable for low Prandtl 
numbers, because the assumption that a linear velocity profile 
in the thermal boundary layer introduces further errors. Their 
results show good agreement with the present investigation 
except in the downstream region where large discrepancies are 
due to the linear velocity profile assumption. The values of 
NUT, x obtained by Campos Silva et al. (1992) are also tabulated 
in Table 4. They employed a linearization procedure for the 
flow problem and solved the decoupled energy equation using 
the generalized integral transform technique. Results were given 
for Pr = 0.72 and 10. Far downstream their results are 
comparable with the present study but close to the entrance the 

differences appear to be higher probably because of the specific 
linearization method they used which ignores the transverse 
velocity component in the developing flow region. 

Table 5 compares the Nusselt numbers obtained in the 
present investigation and those reported by Lin (1977) for a 
non-Newtonian fluid (n = 0.5) at different Prandtl numbers 
(Pr = 1 and Pr = 10). This comparison shows very good 
agreement in the entire channel. 

The Nusselt number under the constant heat flux conditions 
is higher than that under the constant wall temperature 
boundary condition (Nun, x > NUT, x) (Figure 3). The physical 
reason for this behavior can be developed from the 
consideration of the temperature profile. In the case of constant 
temperature boundary condition the temperature of the wall is 
constant and the fluid bulk temperature catches up with it, but 
for the constant heat flux boundary conditions the wall 
temperature is continuously moving away from the bulk 
temperature. Thus, for the same temperature difference between 
the wall and the fluid bulk, the temperature gradient of the 
fluid at the wall is smaller for the T boundary conditions 
because of the fact that the fluid close to the wall approaches 
the same temperature at the wall. Consequently the Nusselt 
numbers are lower for the T boundary conditions. 

Generally for T-type boundary conditions the temperature 
difference of the bulk and the wall is one of the main factors for 
heat transfer. For T and T(1) boundary conditions, in the 
entrance region the differences between the bulk and wall 
temperatures are the same for heating walls, that is, the local 
Nusselt number based on the lower plate for T is very close to 
that for T(1). As the fluid proceeds downstream the 

Table 5 Comparison of NUT, x for n = 0.5 and Re = 500 

Pr = 10 Pr -- 1 

Present Present 
X~h Lin (1977) work Xt~ Lin (1977) work 

0.0007814 15.21 14.83 0.000609 20.71, 20.97 
0.0009989 13.86 13.59 0.001102 16.57 15.98 
0.0012052 13.29 12.76 0.002173 12.29 12.12 
0.0018029 11.43 11.28 0.004045 9.87 9.86 
0.0023350 10.6 10.52 0.005712 9.05 9.03 
0.0040173 9.29 9.29 0.010465 8.27 8.20 
0.0060257 8.65 8.64 0.020552 8.00 7.97 
0.0101102 8.21 8.14 0.026533 7.96 7.95 
0.0205247 7.94 7.95 
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Figure 3(a-d) Effect of power law index on local Nusselt number 
and dimensionless bulk temperature for different boundary 
conditions 

dimensionless bulk temperature for the T boundary condition 
decreases (the bulk temperature either increases, when 
T= < Tw, or decreases, when T= > T.)  more rapidly than that 
for the boundary condition T(1) and also the dimensionless 
heat flux for the T boundary condition decreases slightly more 
than that for T(1). These effects translate into a higher Nusselt 
number for the T boundary condition (Figure 3). 

In the inlet region the bulk temperature as well as the wall 
temperature for H and H(1) boundary conditions are very close 
together. Farther downstream (Tw.x- Tb,0 for H is smaller 
than that for H(1) because of the heating at both walls for the H 
boundary condition. Therefore Nu, for the H(1) boundary 
condition decreases over the axial distance more than that 
for H. 

Effect of  p o w e r  law index 

For the case of constant fluid viscosity, the dimensionless 
velocity profiles at different axial locations as well as Umx and 
f~pp Re are demonstrated in Figures 4a-d for different values 
of n. For the same value of shear rate and consistency index 
the apparent viscosity for a pseudoplastic fluid is lower than 
that for a shear-thickening fluid. In the entrance of the duct, 
because of the viscous effects close to the walls and the high 
shear rate in the wall region, the velocity of the pseudoplastic 
fluid is higher than that of a dilatant fluid. Requirement of mass 
conservation forces the fluids to correspondingly slow down in 
the core of the duct. Farther downstream, viscous effects 
propagate to the centerplane of the channel and influence of 
the power law index diminishes. Figures 4c-d shows the 
centerline velocity and apparent friction factor decrease with 
decreasing the power law index. 

Figures 3a--d shows the local Nusselt number and 
dimensionless bulk temperature distributions for different 
power law indices and also for various boundary conditions. 

Power law fluid flowing between parallel plates: S. Gh. Etemad et al. 

As is shown the Nusselt number increases with decreasing n 
because of the steeper velocity gradient in the wall region for 
lower n values. Farther downstream this difference decreases. 
For the H boundary condition, 0b.x is not affected noticeably 
by n. The reason is that the heat flux is the same for different 
power law index; therefore, difference in velocity profiles for 
different n's is not reflected in the bulk temperature. 

For type T boundary condition the highest (T, -Tb.x) as 
well as the velocity gradient at the wall exist in the entrance 
region, both decreasing monotonically with downstream 
distance. Conversely, for the constant heat flux boundary 
condition (T.,x - Tb,  x) is the smallest in the inlet region and 
increases with downstream distance, whereas the velocity 
gradient remains the highest at X = 0. The value of Nu~ is 
therefore determined by the counteracting influence of these 
two factors. Comparison between the Nusselt numbers for T 
and T(1) and also between H and H(1) boundary conditions 
shows the very small deviation in the relative enhancement of 
the Nusselt number in the entrance region because of a 
reduction in n. Far downstream the relative increase in velocity 
gradient close to the wall for smaller values of n diminishes but 
(T. - Tb, x) for T decreases more than that for T(1) [and also 
(Tw,x - Tb,x) increases for H more than that for H(1)]. These 
effects cause a greater relative enhancement in Nux for T in 
comparison with T(1) and for H in comparison with H(1) in 
the region far from the inlet. 

Effect of variable apparent viscosity 
For most liquids the apparent viscosity decreases with 
increasing temperature. Therefore for heating B > 0 for T and 
T(1) boundary conditions, and B < 0 for H and H(I) boundary 
conditions. 

Figures 5a-d show the effect of variable viscosity on the 
dimensionless velocity profile for various boundary conditions. 
Also, the effect of variable viscosity on the centerline velocity 
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x; 
Figure 4(a-d) Effect of power law index on dimensionless velocity 
profile and friction factor and centerline velocity 
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Figure 6(a-d) Effect of variable viscosity on centerline velocity 
and friction factor for different boundary conditions 

and the apparent friction factor are demonstrated in Figures 
6a-d. 

In the case of heating, for both T- and H-type boundary 
conditions, increasing the temperature in the wall region 
decreases the apparent viscosity of the fluid in this region, 
resulting in higher velocity gradients near the wall and hence 

lower centerline velocities, which lead to enhanced heat 
transfer. 

The effect of variable viscosity on the Nusselt number and 
the dimensionless bulk temperature for different boundary 
conditions can be seen from Figures 7a-d. This effect is not the 
same for different boundary conditions. For T and T(1) 
boundary conditions the temperature difference between the 
bulk and the wall is very large at the entrance, leading to large 
effect of variable viscosity in this region. The distortion of the 
temperature profile owing to the variation of viscosity with 
temperature is also significant. Farther downstream this 
difference decreases gradually, thus retarding the effect of 
variable viscosity. 

The effect of temperature-dependent apparent viscosity on 
heat transfer is not as noticeable for the constant heat flux type 
boundary conditions as it is for the constant wall temperature 
situations. For H-type boundary conditions (Tw, x -  Tb, x) is 
small in the entrance region and increases gradually in the axial 
direction. Thus the effect of variable viscosity on the velocity 
profile is small because the velocity profile is already developed 
(Figures 5c-d). Therefore, the enhancement of heat transfer is 
small relative to that for T-type boundary conditions. As 
is shown from Figure 7 the Nusselt number increases as 
B increases for T-type boundary conditions and also as B 
decreases for type H boundary conditions. 

From Figure 5 it is easy to see that the distortion of the 
velocity profile for T(1) boundary condition is greater than that 
for the other boundary conditions. This results in greater 
relative enhancement (because of the temperature dependence 
of the consistency index) in the Nusselt number. Also, for the 
same reason the relative enhancement of the Nusselt number 
for H(1) is greater than that for H boundary condition. 

In the case of variable apparent viscosity for non-Newtonian 
fluids the heat transfer rate is influenced by two factors: the 
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Figure 7(a-d) Effect of variable viscosity on the local Nusselt 
number and dimensionless bulk temperature for different boundary 
conditions 
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non-Newtonian behavior and the change in velocity profile 
owing to temperature-dependent apparent viscosity, which 
shows the importance of velocity gradient close to the wall for 
both cases. Comparison of Figures 3 and 7 indicates that the 
temperature dependence of the consistency index can have 
greater influence on the heat transfer rate than the power law 
index for T-type boundary conditions. 

One important criterion in obtaining the constant viscosity 
solution is the selection of the temperature at which this 
viscosity should be evaluated. This reference temperature for 
T-type boundary conditions is chosen to be the temperature of 
the wall. Because the average viscosity in the momentum 
boundary layer is higher than that in the isoviscous case (based 
on the wall temperature as a reference) the pressure drop (and 
consequently the apparent friction factor) is higher for the 
variable viscosity case (Figure 6). Further, the inlet fluid 
temperature is used as the reference temperature to evaluate 
viscosity for H-type boundary conditions. Therefore, for 
heating, considering the influence of the variable viscosity 
results in lower values of pressure drop for the H boundary 
condition. The greater distortion of the velocity profile for T(1) 
relative to the T case causes a higher pressure gradient for the 
former case. Also, because of the greater distortion of the 
velocity profile for H(1) than that for H, the pressure drop for 
the H(1) case is higher than that for the H case. 

Effect o f  v iscous diss ipat ion 

The effect of viscous dissipation is very important when the 
viscosity is high or for high shear flows. The Brinkman number 
is commonly used as a criterion which signifies the relative 
importance of viscous dissipation. 

The effect of viscous dissipation on the temperature profile 
for different boundary conditions is demonstrated in Figures 
8a-d. Also Figures 9a--d show the effect of the Brinkman 
number on the Nusselt number as well as the dimensionless 
bulk temperature. 
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Figure 8(a--d) Effect of viscous dissipation on temperature profiles 
for different boundary conditions 
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Figure 9(a-d) Effect of viscous dissipation on local Nusselt 
number and dimensionless bulk temperature for different boundary 
conditions 

First we consider the effect of viscous dissipation for the T 
and T(1) boundary conditions. For heating, Br < 0, whereas 
the reverse applies for cooling. Because the shear rate is the 
highest near the wall, the effect of viscous dissipation is most 
significant in this region• As viscous heating increases the bulk 
temperature (decreases dimensionless bulk temperature), the 
local Nusselt number decreases with decreasing Brinkman 
number. Because of the high temperature difference between 
wall and fluid in the entrance region, viscous heating has only 
a slight effect on the Nusselt number. Farther downstream, for 
low Brinkman numbers, because of combined effects of viscous 
dissipation and wall heating, the temperature of the fluid close 
to the wall approximates the wall temperature, so the 
temperature gradient at the wall is nearly zero; the local Nusselt 
number also approaches zero. At location farther downstream, 
the temperature gradient at the wall becomes negative, and the 
wall temperature is greater than the bulk temperature; this 
leads to negative values for the local Nusselt number. This 
indicates reversal in the direction of the heat flux. As the fluid 
proceeds downstream the fluid bulk temperature increases 
continuously and finally becomes the same as the wall 
temperature• Consequently, the Nusselt number becomes 
infinite. Figures 10a-b show the local Nusselt number, 
dimensionless bulk temperature and also dimensionless heat 
flux through the wall for a very long duct (300 times the 
hydraulic diameter for T boundary condition and Br = -2).  
As shown in this figure far from X = 0, Tb., >Tw, so the 
dimensionless bulk temperature is negative. Also because of the 
negative heat flux in this region the Nusselt number becomes 
positive again and decreases with the increasing axial distance. 
At location very far from upstream increases in the 
dimensionless bulk temperature as well as dimensionless heat 
flux become very small and the Nusselt number approaches an 
asymptotic value. Figure 9a indicates that for a specific 
Brinkman number the asymptotic Nusselt number is lower 
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than that for the case without viscous dissipation and also the 
attainment of the asymptotic Nusselt number requires infinitely 
long duct lengths. 

For the T(1) boundary condition and large negative 
Brinkman numbers, Br = - 2 . 0  (where the viscous heating 
is dominant), close to the entrance the relative decrease in the 
Nusselt number ((Nu)=. a, ~ -2.o/(Nu)~.B, = o.o) is approximately 
the same as that for the T boundary condition because of the 
small effect of viscous dissipation in this region. Farther from 
the entrance the viscous heating is almost the same for both 
cases, but because of the greater wall heating in the T boundary 
condition, the relative decrease in the Nusselt number owing 
to viscous heating for T(1) is greater than that for T. For 
Br = -0.05, the dominance of wall heating causes almost the 
same relative decrease in the Nusselt numbers. 

For constant heat flux-type boundary conditions, the 
Brinkman number is positive for the case of heating. Because 
the temperature difference between the wall and the fluid is 
very small in the entrance region, and viscous heating is greater 
in the inlet region, the most effect of the viscous dissipation is 
felt in this region. This effect decreases with downstream 
distance. 

Based on the foregoing discussion the viscous heating is a 
dominant factor in the entrance region for H-type boundary 
conditions. Thus the relative decrease of the Nusselt number 
for H and H(1) owing to viscous heating is almost the same in 
this region, but far from the inlet this decrease for H is greater 
than that for H(1) boundary condition. 

Simultaneous effects of  temperature-dependent 
apparent viscosity and viscous dissipation 

When the effect of variable viscosity is considered, the 
equations of motion and energy are coupled via the 
temperature-dependent viscosity. The coupling between mo- 
mentum and energy equations is extended by considering the 
viscous dissipation effects. When the temperature-dependent 
viscosity is considered, the velocity profile changes because of 
heating, and also the viscous heating effect produces higher 
temperatures in the wall region. The effect of viscous dissipation 
reduces the heat transfer and also changes the velocity gradient 
near the wall, which causes increased heat transfer to the fluid. 

Table 6 presents the ratio of the Nusselt number for B -- 1.5 
and Br = -0 .5  (or B = - 1 . 5  and Br = 0.5 dependence on 
the boundary conditions) relative to the case of constant 
viscosity and no viscous heating. For T-type boundary 
conditions Table 6 emphasizes the dominant effect of 
temperature-dependent viscosity close to the entrance because 
of the fact that the enhancement of the Nusselt number related 
to variable viscosity is maximal in this region and also the 
decrement of the Nusselt number because of viscous dissipation 
is very small. At axial location farther downstream, the viscous 

Table 8 Ratio of the Nusselt number for different boundary 
conditions and Pr = 10, n -- 0.5 and Re = 500 

X~' h T T(1 ) H H(1 ) 

0.0001102 1.086 1.116 0.318 0.321 
0.0002927 1.056 1.107 0.386 0.390 
0.0004045 1.047 1.098 0.407 0.412 
0.0008830 0.993 1.041 0.448 0.456 
0.0016612 0.913 0.944 0.472 0.484 
0.0032669 0.800 0.818 0.486 0.505 
0.0062680 0.684 0.703 0.495 0.526 
0.0128136 0.544 0.584 0.515 0.573 
0.0221952 0.363 0.419 0.547 0.633 
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Figure 10(a and b) Local Nusselt number and dimensionless bulk 
temperature for T boundary condition and Br = -2 .0  
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Figure 11 (a-d) Effect of Prandtl number on local Nusselt number 
and dimensionless bulk temperature for different boundary 
conditions 

dissipation effect is dominant and the Nusselt number becomes 
smaller than that for the case of constant viscosity with no 
viscous dissipation effects. 

For H-type boundary conditions, because the effect of 
viscous heating is greatest and the variable viscosity effect is 
small in the entry region, viscous dissipation dominates the 
Nusselt number distribution in this region. 

Effect o f  Prandtl number 

The effect of Prandtl number (defined for a power law fluid, 
Equation 8) on heat transfer for a fluid of n = 0.5 and different 
boundary conditions is demonstrated in Figures 1 l a d .  Nu= is 
lower for the lower Prandtl number in the entrance region and 
asymptotically approaches a value far downstream that is 
independent of Pr. The lower Prandtl number causes faster 
thermal development, which results in a higher fluid bulk 
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Figure 12(a-d) Effect of Prandtl number on local Nusselt number 
and dimensionless bulk temperature versus dimensionless axial 
coordinate for different boundary conditions 

temperature (lower dimensionless bulk temperature for the 
T-type boundary conditions) and also lower dimensionless wall 
heat flux for T-type boundary conditions. The competition 
between these two effects causes a lower heat transfer rate. As 
the fluid proceeds downstream this effect diminishes because 
of the thermal development• For  H-type boundary conditions 
the lower Pr increases the (Tw,. - Tb, x), which, in turn, results 
in a lower local Nusselt number. 

Figures 12a-d display the effect of Pr on the local Nusselt 
number and dimensionless bulk temperature versus Xt%. 
According to this definition of X* the lower Prandtl number 
case results in a higher Nusselt number over the entire length. 

C o n c l u s i o n  

A numerical study was carried out of the steady laminar heat 
transfer for simultaneously developing flow of power law fluids 
between horizontal parallel plates. The analysis considered the 
effects of power law index, temperature-dependent viscosity, 
viscous dissipation, Prandtl number and also the simultaneous 
effects of variable viscosity and viscous dissipation under a 
variety of boundary conditions. The favorable comparison of 
the present results with experimental data available for air as 
a fluid and also analytical results for fully developed case 
support the accuracy of these results. 

This work has shown that the influence of non-Newtonian 
behavior on the heat transfer and fluid flow characteristics can 
be significant. The results are also markedly different from 
those obtained assuming constant viscosity. Viscosity variation 
with temperature affects the local Nusselt number and also the 
pressure drop. For  heating, the increase in the local Nusselt 
number for constant temperature boundary conditions is 
noticeably higher than that for the constant heat flux boundary 
conditions. 

Viscous heating has a very significant effect on heat transfer, 
which can even change the direction of heat flux for the case 
of uniform temperature boundary conditions. 

The results indicate that the Prandtl number is a very 
important parameter; the lower the Prandtl number, the lower 
the heat transfer in the developing region of the channel. 
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